空中超音波を利用した非接触触覚提示法

熊本大学
星 貴之
特集 空中超音波の利用①

空中超音波を利用した非接触触覚提示法

熊本大学 星 貴之

1. はじめに
近年、バーチャルリアリティやユーザインタフェースの分野で「空中映像に触る」システムの発表が相次いでいる(1)～(3)。目の前に浮かんで見える映像を手で伸ばすと、映像と手の接触が検出され、それに応じて映像が変化する。これによりバーチャル動物とのふれあいや、映画の登場のような空に浮かぶタッチスクリーンが実現できる。このようなシステムはゲーム、展示、電子広告など、あるいは接触を伴わず衛生的という特長から食品工場や医療現場での利用が期待される。構成要素は、空中映像ディスプレイと、ユーザーの手の動きを計測するセンサである。少し前までこれらの技術は研究段階であるが高価な製品であった。しかし昨年（2010年）4月に家庭用3Dテレビが、11月に距離カメラを搭載したゲームデバイスKinectが国内で販売され始めたことをきっかけに、空中映像と身体動作による入力が身近なものになろうとしている。

ところで空中映像とセンサのみならずシステムでは、映像が変化するため視覚的には触れられた印象が得られるものの、手には何の感触もない。そのため接触の瞬間が不明瞭であったり、入力操作が確実に行われたという手ごたえがなく不安を感じたりすることがある。そこで視覚だけでなく、手指に対してもフィードバックが必要なことが好ましい。そのような要求に応えるため、文献2)(3)では触覚フィードバックも行っている。それは装着型の小型デバイスが皮膚表面を刺激することによって実現されている。

筆者所属する研究グループも、触覚を感じながら空中映像とインタラクションすることのできるシステムを開発、発表している(1)(3)（写真1）。このシステムの特長は触覚を非接触で提示する点である。手指にデバイスを装着する必要がなく、ユーザーへの負担が少ない。触覚提示には、我々が開発した「空中超音波触覚ディスプレイ」を使用している。数百個の超音波振動子をそれぞれ適切な位相で駆動し、空中に超音波波を生成する。そこに手をかざすと、数gf程度の力を感じることができる。これは音響放
射軸と呼ばれる、超音波の非線形現象によるものである。位相を変えることにより焦点の位置を自在に動かすこともできる。エアジェットなど気流を用いた触覚提示法と比較して、空間的にも時間的にもきめ細かい制御が可能である。

本稿では空中超音波触覚ディスプレイの原理と試作機について紹介する。これは筆者らによる既報8）を再構成したものである。

2． 超音波を利用した触覚提示

本研究以前には、文献7)～9)などにおいて超音波による触覚提示が試みられている。文献7)8)は集束超音波によって神経を直接発火させるもので、表面において放射圧を発生させる本研究とは異なる。また文献9)0)は本研究と同様、放射圧にもとづくものであるが、超音波の媒質として水を用いている。そのため皮膚内部に超音波が浸透するのを防ぐ目的で皮膚表面に反射板や反射シートを配置している。一方、本稿では媒質として空気を用いる。音響インピーダンスの違いによって皮膚表面では全反射するため、素手で触覚を感じられる点が特長である。

本研究では40kHzの超音波を用いる。市販の空中超音波用振動子には共振周波数40kHzのものが多く、入手が容易なためである。またこの周波数は減衰の点でも都合がよい。40kHzの空気中における減衰定数は1dB/m程度と、比較的遠方までよく届く10)。周波数が2倍になると減衰定数は2倍になることが知られており、高い周波数を用いると触覚の提示可能範囲が急激に狭まってしまう。一方、周波数と焦点径は反比例すると（2-2節参照）。したがって空間解像度と提示可能範囲はトレードオフの関係にある。

空中超音波触覚ディスプレイはふたつの原理にもとづいている。ひとつは音響放射圧、もうひとつはフェーズドアレイである。以下、それぞれについて説明する。また超音波の安全性についても検討する。

2-1 音響放射圧

提案手法は音響放射圧11)にもとづいている。媒質中を伝搬する超音波を物体で遮ると、物体表面に垂直な方向の応力が発生する。その応力（音響放射圧）P（Pa）は、平面波が物体表面に垂直に入射することを仮定すると、次のように表される。

\[P = aE = aI/c = a\rho^2/pc^2 \] \hspace{1cm} (1)

ここでE（J/m^3）は超音波のエネルギー密度、I（W/m^2）は音響インテンシティ、c（m/s）は音速、\(\rho \)（Pa）は音圧（実効値）、\(\rho \)（kg/m^3）は媒質の密度である。\(a \)は物体表面の反射特性によって決まる係数であり、入射圧がすべて吸収されるとき\(a = 1 \)，全反射のとき\(a = 2 \)である。音圧の二乗に比例していることから、放射圧は音圧が大きいほど顕著に表れる現象であることが読み取れる。また式(1)では、ある放射圧の分布を発生させるためには超音波の分布を操ればよいことを示している。

2-2 フェーズドアレイ

単独の超音波振動子が生じる音響放射圧はごく微弱である。手のひらで感じられる程度の出力を得るため、多数の超音波振動子を用いる。各振動子の位置を適切に制御し、空中に単一の焦点を結ぶ。\(N \)個の振動子を用いると、単純計算で\(N^2 \)倍の音響放射圧が焦点において発生する。また位相を操作することで焦点の位置を自在に変えられる。すなわち、離れた場所から任意の位置に触覚を提示することができる。

正方形の振動子アレイを用いたとき、焦点面に生じる超音波の音圧分布はほぼsinc関数に従うことが理論的に導かれている（文献6)参照）。そこから求められるメインローブの幅（焦点の直径）\(w(m) \)は

\[w = 2\lambda R/D \] \hspace{1cm} (2)

である。ここで\(\lambda \)（m）は超音波の波長、\(R \)（m）は焦点距離、\(D \)（m）は正方形アレイの辺の長さである。よって焦点距離とアレイサイズが同程度のとき、40kHzの超音波（\(\lambda = 8.5 \)mm）は17mm四方の領域に集束する。この焦点径が本手法の空間解像度である。また、超音波の周波数と空間解像度を保ったまま焦点距離を長くしたい場合にはより大きなアレイが必要であることも読み取れる。

2-3 安全性

本研究では大振幅の超音波を扱うため、人体への影響を考慮する必要がある。注意すべき項目はふたつある。ひとつは熱による皮膚組織への影響である。これに関して複数の安全基準が存在しているが、文献14)によると皮膚組織に透過しても安全とされる上
限は100mW/cm²である。皮膚表面に入射した超音波エネルギーのうち0.1％が皮膚内部へ透過することから、皮膚表面には100W/cm²まで入射してよい。このとき発生する放射圧は6kPa。これが提示可能な放射圧の上限を与える。

もうひとつは耳への影響である。文献9で推奨されている上限は110dB SPLである。本研究で使用している超音波振動子は、単独で30cm離れた位置に215dB SPLの超音波を発生させる。1個で上限を超える上に、本研究では数百個の振動子を同時に駆動する。安全性が確認されるまでは、ヘッドフォンなどで耳を保護するなどの対処をする必要がある。

3. 空中超音波触覚ディスプレイの試作機

超音波振動子324個を18×18cm²の正方形領域内に並べた振動子アレイ（写真2）と、各振動子を独立に制御する駆動回路から成る試作機を製作した。以下、この試作機の性能について記述する。

写真2 18×18超音波振動子アレイ

3-2 空間分布

焦点周辺に生じている放射圧分布を計測した。焦点距離を20cmに設定し、100Hz矩形波で変調をかけた超音波を出力した。直径2mmのオリフィスを介して圧力センサで音圧を計測し、高速フーリエ変換（FFT）によって100Hz成分（放射圧）を抽出した。なお振幅には長周期の変動が見られたため、観察を1分間続けたときの最大値と最小値を記録した。

結果を第1図(a)(b)に示す。振動子アレイに平行な面をXY平面としている。データは最大値で規格化されている。メインロープがほぼ理論と一致していることが確認できる。一方、サイドロープは非対称になっている。この原因としてはアレイを構成する振動子の位相特性のばらつきや位相の量子化誤差などと考えられる。

また、焦点中心部において計測した音圧方向（Z方向）の放射圧分布を第1図(c)に示す。焦点深さは10cm程度であり、相対振幅0.9以上の部分に限っても1cmの幅がある。このことは、特に数百Hzの高い周波数を提示する際に有利に働く。振動子による触覚提示では、ビンの変位によって刺激強度を制御している。しかし高周波数において粘弾性のために皮膚がビンに追従しなくなる現象が指摘されていた。一方、放射圧の場合は非接触で応力を制御するため、皮膚が音圧方向に多少変位しても常に所望の応力を提示できる。

3-3 時間応答

超音波に100Hz矩形波で変調をかけ、焦点の中心部における音圧を計測した。圧力センサから得られた超音波波形を第2図(a)(b)のCH1に示す。また、そこからローバスフィルタによって抽出した放射圧波形をCH2に示す。駆動する電圧波形は矩形波であるが、共振子の共振特性により音圧はなんだらかに立ち上がる。放射圧は音圧の二乗に比例するためさらになだらかであるが、1ms以内に立ち上がっていることがわかる。

また変調周波数を1Hzから1kHzまで変えることによって変調周波数成分の振幅を調べる実験も行った。結果を第2図(c)に示す。1kHzにおいて振幅がもっとも減衰し、低周波の場合と比較して1/2となっている。人間の触覚は1kHz程度まで知覚可能であるこ
第1図 放射圧の空間分布
焦点距離を20 cmに設定した場合。データは最大値で正規化されている。縦棒は最大値と最小値を結び、点はそれらの平均値を表す。

3-4 触感
学会（文献4など）、技術展示会において本試作機のデモを行なった。100 Hzあるいは200 Hzの矩形波で変調をかけ、振動刺激を提示した。体験者からは以下のような感想が得られた。まず全員から、応力が集中していることを感じ取ったという回答があった。これは我々の期待通りである。少数からは、
ビリビリした静電気のような感じがするという感想もあった。これは矩形波で変調しているため、立ち上がりの急峻さが影響していると考えられる。また応力の他に風のような感じがするとの感想もあった。これは超音波ビームに沿って気流が発生していると覚えるためと考えられる。3→2節で述べた長周期の変調もこの気流に関連したものと考えられる。気流の原因やそれが触感の質に与える影響などについては未解明な点が多く、今後の課題である。

4. おわりに
本稿では空中を伝搬する超音波を用いた非接触触覚提示法について紹介した。多数の振動子を適切な位相で駆動することにより、空中に超音波ビームを生成する。焦点に手をかざすと音響放射圧が発生し、視覚刺激が提示される。位相を制御することにより、空間中任意の位置に焦点を生成できる。これは離れれた場所から触覚を提示するため、空中映像との親和性がよい。本手法は原理上、提示可能な力が比較的小さいため重い物体や硬い表面は再現できず、軽い物体や柔らかい表面の手触りなどが対象となる。

今後の可能性は、以下のように想定している。
① 振動子スケールを大規模化することにより、触覚の提示可能範囲の拡大と出力の向上を目指す。
② 単一焦点以外の応力分布を、複数のアレイを用いた多方向の触覚提示など空間分布のバリエーションを増やす。
③ 単一周波数ではなく、波形などの手触りを再現する変調法を開発する。3→4節でも述べたように気流の原因やその影響についても詳しく調べる必要がある。

謝辞
本研究は科学研究費補助金・特別研究員奨励費（19・1708）及び科学研究費補助金・基盤研究（A）（18206046）の助成を受けたものである。

＜参考文献＞
(2) RePro3D，http://www.jst.go.jp/pr/announce/20101012/index.html
(3) iSpace，http://www.aist.go.jp/aist_j/pr/press_release/pr2010/pr20100825/pr20100825.html
(5) Touchable Holography，http://www.youtube.com/watch?v=YP1zZAcPuww

——【筆者紹介】——
星 貴之
熊本大学 大学院 自然科学研究科
産業創造工学専攻 機械知能システム講座 助教
〒860-8555 熊本市黒髪2-39-1
TEL：096-342-3742 FAX：096-342-3742
E-mail：star@kumamoto-u.ac.jp

12 超音波TECHNO 2011.5-6.