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In this paper, we introduce a novel sensing device named “three-dimensional capture sheet (3DCS).” The cloth-like sheet 

measures its own 3D configuration with no external equipments. It has many potential applications such as 3D modeling, 

entertainment, size and shape measuring, wearable motion capture, tactile sensor, and so on. It consists of a lattice structure inside 

of the sheet, and each link of the structure has a sensor chip consisting of a triaxial accelerometer and a triaxial magnetometer. 

The sensor chip measures the gravity and the Earth’s magnetic field to obtain the link posture. After all the link postures are 

obtained, the whole shape of the sheet is reconstructed by combining them. The estimation error from disturbed magnetic data is 

corrected by utilizing a constraint originating from the lattice structure. Feasibility and stability of the shape estimation algorithm 

are confirmed through simulations, and the prototype of the sensor chip is presented.  
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1. Introduction 

Providing intelligent functions for fabrics has often been 

reported in the field of wearable computing [1]-[3]. In early 

studies, in order to realize functionality, several middle-sized 

sensors were attached on fabrics or clothes. Recently, it is getting 

easier to embed a large number of down-sized and low-cost 

sensors in elastic cloth-like materials, due to the recent advances 

in CMOS-MEMS [4] and the new sensor networking technology 

[5].  

Motivated by that trend, we propose a novel cloth-like device 

that measures its own 3D shape and motion by utilizing a large 

number of sensors distributed on it. The device is named 

“3-dimensional capture sheet (3DCS).” One of the conventional 

methods for observing the cloth motion is to utilize optical 

methods like the optical 3D digitizers [6]. However, such methods 

are weak against the self-occluding situation. In addition, optical 

methods require external equipments such as cameras and light 

sources, which can be drawbacks in some applications. The 3DCS 

does not suffer from the self-occlusion problem and requires no 

external equipments.  

The 3DCS has several potential applications. First, the device 

can be used in measuring the shape of 3D objects. The shape and 

size of an object can be measured easily by wrapping it with the 

3DCS. The human posture can also be measured by wearing it. 

Second, it is possible to make a soft tactile sensor [7] with the 

3DCS by covering compressible materials such as urethane foams 

with it. If the deformation of the surface of the material is given, 

the number, shapes, and positions of contact objects can be 

estimated. In addition to those applications described above, it is 

also useful to capture the 3D shapes of clothes for 3D modeling 

applications.  

In this paper, we discuss one of the realization methods of the 

3DCS. Fig. 1 shows the structure of the 3DCS. A cloth-like sheet 

has a lattice structure on it. A triaxial accelerometer and a triaxial  

 

Figure 1. Illustration of the 3DCS.  

 

magnetometer are attached on each link. They measure the gravity 

and the geomagnetic vectors. The posture of the link is calculated 

using the measured data. After the postures of all the links are 

obtained, the whole shape of the sheet is computed by combining 

the links. That reconstruction algorithm is free from the 

well-known error accumulation caused by the double integration 

of the acceleration. Besides, both of the gravity and the Earth’s 

magnetic field are available everywhere on the Earth.  

In the previous reports [7], [8], we proposed the gravity-based 

method of the 3DCS. Although it works well in many cases, it has 

some singular states where reconstruction is impossible. We 

therefore propose a reinforced method by introducing the Earth’s 

magnetic field as additional information. Gravity and geomagnetic 

measurement has been used in motion capture in the preceding 

reports [9], [10]. We apply this technique to the 3DCS.  

The following paper describes the basic structure and the theory 

of 3D shape reconstruction of the 3DCS in Section 2. Feasibility 

of the sheet is examined by simulation in Section 3. Then, the 

current status of implementation is presented in Section 4. Then, 

Section 5 concludes the paper.  
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Figure 2. (a) Lattice model made of rigid tubes combined with strings 

(7×7 lattice consisting of 2.5 cm links). (b) The lattice can be mounted 

on a smooth curved surface. For example, here it covers the ball. (c) 

The omni-directional lattice structure.  

 

2. Three-Dimensional Capture Sheet 

2.1  Structure        The illustration of the 3DCS is shown in 

Fig. 1. The 3DCS consists of rigid links forming a lattice structure. 

A sensor chip is attached on each link which has a triaxial 

accelerometer and a triaxial magnetometer. The accelerometer and 

the magnetometer measure the gravity and the geomagnetic 

vectors, respectively. The measured data are sent to the host 

computer. The x- and z-axes of both sensors are aligned to be 

parallel to the direction vector of the link. The length of each link 

is the same. The links are connected to each other at joints and 

rotate freely around the joints.  

Fig. 2 shows a mock-up of the 3DCS consisting of rigid tubes 

combined together using strings. Since the length of the link does 

not change, the lattice structure expands or contracts along the 

diagonal directions, as is the case with a textile cloth. As shown in 

Fig. 2 (b), the structure is able to cover a smooth curved surface. It 

is possible to make the lattice structure omni-directional by 

connecting the links little more intricately as shown in Fig. 2 (c).  

2.2  Problem Settings        First, we introduce an assumption 

to restrict the problem to a static case. The acceleration caused by 

motion of the link is negligible compared with the gravity 

acceleration. The shape estimation in a dynamic case is not 

considered at least in this stage.  

The 3DCS utilizes the gravity vector g and the Earth’s magnetic 

field b to estimate its configuration. We assume b is perpendicular 

to g, tentatively here. The real situation where b has a parallel 

component to g is mentioned in the end of Section 2.3. The world 

coordinate is set so that the z- and x-axes are parallel to g and b, 

respectively (Fig. 3).  

The posture of each link is described by three angles based on 

the world coordinate (Fig. 3); roll α [rad], pitch β [rad], and yaw γ 

[rad] (–π ≤ α < π, –π/2 ≤ β ≤ π/2, and 0 ≤ γ < 2π). The angles of 

each link are calculated from the measured gravity and 

geomagnetic vectors. After the angles of all the links are obtained,  

 
Figure 3. World coordinate and posture angles. 

 

the whole shape of the 3DCS is calculated by combining the links 

in a 3D space.  

The angles of the link are obtained as follows. Here we assume 

that each axis of the accelerometer and the magnetometer is 

aligned to the corresponding axis of the world coordinate (i.e. the 

x-axis of the accelerometer to the x-axis of the world coordinate) 

in the initial condition. 

2.3  Derivation of Link Posture        All the posture angles 

are derived directly from the gravity and the geomagnetic vectors 

measured with the sensor chip on each link. The rotation matrix 

Gγβα, from the world coordinate to the sensor coordinate, is 

described as  
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where “s” and “c” stand for “sin” and “cos”, respectively. Each 

column of Gγβα means the axis of the sensor coordinate 

represented in the world coordinate after rotated. The output 

vector of the accelerometer a = [ax, ay, az]
T is represented as a 

product of the transposed matrix of Gγβα and the gravity vector g = 

[0, 0, -g]T (where g [m/s2] is the gravity acceleration);  
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Similarly, the output of the magnetometer m = [mx, my, mz]
T is 

represented as a product of the transposed matrix of Gγβα and the 

geomagnetic vector b = [b, 0, 0]T (where b [T] is the flux density 

of the Earth’s magnetic field);  
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Then α, β, and γ are obtained by solving (2) and (3) without 

knowledge of the values of g and b. After the same algorithm is 

applied to each link to obtain the roll, pitch and yaw angles, the 

whole configuration is estimated by combining them.  
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Figure 4. Lattice unit. Directional vectors form a closed-loop. 

 

 

Figure 5. (a) Lattice unit in a disturbed magnetic field and (b) the 

estimated shape based on the parallel assumption. The dotted lines 

represent the magnetic field lines.  

 

Note that the geomagnetic vector b makes the declination angle 

with the horizontal in the real situation, and hence the 

magnetometer output m has a parallel component to the 

accelerometer output a. A perpendicular component m' is used for 

the estimation algorithm instead of m, that is calculated as  
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The yaw angle γ can be obtained unless m' = 0 (which situation 

rarely occurs). The precise knowledge of the declination angle is 

not necessary.  

2.4  Correction of Magnetic Disturbance        The Earth’s 

magnetic field is easily disturbed by magnets, coils, or 

ferromagnetic materials. That leads to an estimation error on the 

yaw angle.  

We have an idea to correct this estimation error by utilizing a 

constraint originating from the lattice structure. Here we take note 

of one unit of the lattice structure composed of four links forming 

a quadrangle (Fig. 4). Because the directional vectors di (i is the 

link identification) of the links make a closed-loop; that is 

represented as  
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When a magnetic disturbance occurs, the magnetic vectors at the 

sensor positions are no longer parallel (Fig. 5 (a)). Then the 

estimated shape based on the measured magnetic data results in an 

open-loop (Fig. 5 (b)). By solving (5) about γi around the values 

estimated from (3), γi are re-estimated so that the lattice unit 

becomes a closed-loop. This correction algorithm needs more 

mathematical analysis on solvability and uniqueness.  

 

Figure 6. Simulation results for a Gaussian shape. The far and the near 

plots are the lattice model and the estimated shape, respectively.  

 

3. Simulations and Results 

3.1  Methods         The purpose of the simulation was to 

confirm if it was feasible to reconstruct the shape of a 

computational object based on the proposed algorithm. A 

computational model of a 13×13 lattice structure comprised of 

links was used as the model of the 3DCS. In this lattice model, the 

link was modeled as a rigid body so that the length of the link (2.0 

cm) did not change, and the node was modeled as a free-joint.  

The lattice model was laid over a target computational shape. 

Position and posture of each link were determined by iterative 

calculation. According to the calculated postures of the links, the 

acceleration and the magnetic field vectors were simulated which 

were equivalent to the outputs of the accelerometers and the 

magnetometers.  

After that, based on the acquired acceleration and magnetic data, 

the shape of the computational object was estimated. The posture 

angles α, β, and γ were analytically determined by solving (2) and 

(3). In order to re-estimate the yaw angle γ, the following 

numerical calculation was conducted.  

First, we modify (5) into a minimization problem, that is  
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where j is the coordinate identification. Here, γi are unknown 

parameters. If the minimum value of P is equal to zero, the 

solutions for (7) are also the solutions for (5). Second, we solve 

(7) by the conjugate gradient method [11]. The values of γi 

obtained from (3) are used as initial values. Accordingly, the 

probable values of γi are obtained.  

3.2  Results of Shape Estimation        An example of general 

situations using a Gaussian as a target shape is shown. Fig. 6 

shows the computed lattice model laid over the Gaussian shape 

(plots at far side) and the reconstructed shape using the 

acceleration data (plots at near side). The Gaussian shape is 

successfully reproduced.  

3.3  Effects of Acceleration and Magnetic Noises        The 

results in Fig. 6 were obtained without considering the effects of 

noise. There are several possible causes of disturbance in the real 

situation, including random noise on the sensor data, change of the 

link length, and acceleration of motion. Among the causes listed 

above, the most major cause is considered to be the noise on the  
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Figure 7. Simulation results on effect of noises. The worst cases of the 

maximum estimation error, i.e. the envelope of the error plot, are shown 

(10 trials per each noise level). The area where the maximum estimation 

error is lower than 15 % is colored deeply.  

 

     

                 (a)                       (b) 

Figure 7. Examples in the cases of (a) 5 % acc. and 20 % mag. noises, 

and (b) 10 % acc. and 20 % mag. noises.  

 

acceleration data. In order to investigate the stability of the 3DCS 

under various S/N ratios, the following simulation was carried out.  

The simulation was carried out in the same manner as described 

in Section 3.1, except that noises were added to each component 

of the acceleration and magnetic data. The noises were generated 

using the Mersenne Twister algorithm [12]. The acceleration and 

magnetic noise levels were represented as the percentages of the 

noises compared to the gravity g and the geomagnetic flux density 

h, respectively.  

Fig. 7 shows the maximum values of the estimation errors as 

the function of the acceleration and magnetic noise levels. The 

estimation error of each trial is the maximum distance between the 

nodes of the lattice model and the corresponding nodes of the 

reconstructed model, which is normalized by the length of the side 

of the 3DCS. The reconstructed shape has uncertainty in the 

absolute position and posture. Therefore, the estimation errors 

were determined as follows. The sum of the distance between the 

nodes of the lattice model and the corresponding nodes of the 

reconstructed model (i.e. the estimation error sum) was calculated. 

The absolute position and posture of the reconstructed model were 

varied so that the estimation error sum was minimized based on 

the least-square method. Note that if no errors are added to the 

acceleration outputs, the lattice model and the reconstructed shape 

should be identical. 10 trials per each noise level were conducted. 

The maximum value of the estimation error among all the nodes 

was chosen and shown in Fig. 7 for each noise condition.  

 
Figure 8. Simulation setting with a single-loop coil. The diameter is 10 

cm and the current I is 10 A.  

 

 
Figure 9. Simulation results on effectiveness of the correction algorithm. 

The horizontal axis is the distance d, normalized by the link length l, 

between the coil and the 3DCS.  

 

    

                 (a)                      (b) 

Figure 10.  Examples in the cases with correction. (a) d/l = 0.9 (error = 

1.1 %) and (b) d/l = 0.8 (error = 6.9 %).  

 

From our observation of this simulation, it turned out that the 

maximum estimation error higher than 15 % (i.e. 39 mm) is 

critical. Based on that benchmark, it turns out that the noise levels 

are allowed up to 8 % for acceleration data (i.e. about 0.8 m/s2 in 

acceleration) and 25 % for magnetic data (i.e. about 7.5 µT in 

magnetic flux density in Tokyo). Typical examples are shown in 

Fig. 7; (a) successful and (b) unsuccessful.  

3.4  Effectiveness of Correction Algorithm        In order to 

examine effectiveness of the correction algorithm described in 

Section 2.3, the following simulation was carried out. It was 

carried out in the same manner as described in Section 3.1, except 

that a single-loop coil (magnetic source) added an additional 

magnetic field to the Earth’s magnetic field. The coil was parallel 

to the x-y plane and located just above the model shape at a 

distance d [m] from the surface of the 3DCS (Fig. 8). The  
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Figure 11. Hand-made trial circuit of the sensor chip (19×38 mm2). The 

chips mounted on the left and right sides are the microcomputer 

(6.4×6.5 mm2) and the 6-axis sensor (5.2×6.0 mm2), respectively.  

 

diameter of the coil was 10 cm and the current I [A] was 10 A. 

The magnetic field arisen from the coil was calculated based on 

the Biot-Savart law.  

  Fig. 9 shows the estimation errors as the function of the 

distances between the top of the model shape and the coil. The 

distance d is normalized by the link length l [m]. (Here, l = 2.0 

cm.) Because this simulation was without random noises, 1 trial 

per each distance was conducted.  

From the results of the simulation, it turned out that the shape 

was successfully reconstructed even when the coil was located at a 

distance of 1.8 cm (d/l = 0.9) from the surface of the 3DCS. Then 

the estimation error was as small as 1.1 % (i.e. about 2.9 mm). The 

same error occurred when d = 9 cm (d/l = 4.5) in the case without 

correction. That suggests that the estimation algorithm works well 

unless magnetic sources or ferromagnetic materials come very 

close to or contact the 3DCS. Typical examples are shown in Fig. 

10; (a) successful and (b) unsuccessful.  

4. Implementation 

We are in the process of developing a prototype of the gravity- 

and geomagnetic-based 3DCS. A small-sized sensor chip will be 

fabricated which has a 6-axis motion sensor (AMI601, Aichi 

Micro Intelligent Corp.). That sensor functions as both a 3-axis 

accelerometer and a 3-axis magnetometer. The sensor chip also 

has a microcomputer chip (R8C/16, Renesas Technology Corp.) 

which receives the measured data from the motion sensor and 

transmits the data to the host PC via an I2C bas line.  

Now it has been verified that the gravity and geomagnetic data 

are successfully obtained with a trial circuit of the sensor chip (Fig. 

11). The next step is miniaturization and increase of production.  

5. Conclusion 

This paper proposed a new flexible sensing device “3DCS,” 

which measures its own 3D configuration using distributed triaxial 

accelerometers and magnetometers. The details of the structure 

and the shape estimation algorithm were described. The feasibility 

of the algorithm was verified by simulation. Development of the 

prototype is in progress.  

In the future, we will develop a small-sized sensor chip on 

which a customized LSI is mounted with a triaxial accelerometer 

and a triaxial magnetometer. The LSI is designed to receive the 

sensor readouts and send digital data to the host computer via the 

two-dimensional communication sheet [5]. The required electrical 

power is also supplied via the same sheet to the sensor chips. 

Combining together with these technologies, the practical 3DCS 

will be realized without complicated long signal/power wires.  
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